import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
adj = [
[0, 1, 1, 0],
[1, 0, 0, 1],
[1, 0, 0, 1],
[0, 1, 1, 0]]
print (adj)
G = nx.from_numpy_matrix(np.array(adj))
nx.draw(G, with_labels=True)
plt.axis('equal')
plt.show()
[[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]]
[PNG image (24.8 KB)]
# 5 X 5
adj = np.zeros((25,25))
for i in range(0, 25):
u = i - 5
d = i + 5
l = i - 1
r = i + 1
if 0 < u:
adj[i][u] = 1
if d < 25:
adj[i][d] = 1
if 0 <= l and (l % 5) != 4:
adj[i][l] = 1
if r < 25 and (r % 5) != 0:
adj[i][r] = 1
print (adj)
G = nx.from_numpy_matrix(np.array(adj))
nx.draw(G, with_labels=True)
plt.axis('equal')
plt.show()
[[0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0.]]
[PNG image (51.66 KB)]
nx.draw_random(G, with_labels=True)
[PNG image (89.05 KB)]
# DFS visualization
adj = np.zeros((25,25))
adjTrail = np.zeros((25,25))
visited = np.zeros(25)
def dfs(v):
global adjTrail
global visited
visited[v] = 1
for i in range(0, 25):
if adj[v][i] and not visited[i]:
adjTrail[v][i] = 1
adjTrail[i][v] = 1
dfs(i)
for i in range(0, 25):
u = i - 5
d = i + 5
l = i - 1
r = i + 1
if 0 < u:
adj[i][u] = 1
if d < 25:
adj[i][d] = 1
if 0 <= l and (l % 5) != 4:
adj[i][l] = 1
if r < 25 and (r % 5) != 0:
adj[i][l] = 1
dfs(0)
G = nx.from_numpy_matrix(np.array(adj))
pos = nx.spring_layout(G)
trail_edges = [(u, v) for (u, v, d) in G.edges(data=True) if adjTrail[u][v] == 1]
null_edges = [(u, v) for (u, v, d) in G.edges(data=True) if adjTrail[u][v] == 0]
# nodes
nx.draw_networkx_nodes(G, pos)
# edges
nx.draw_networkx_edges(G, pos, edgelist=trail_edges)
nx.draw_networkx_edges(G, pos, edgelist=null_edges, edge_color="lightgrey", style="dashed")
# labels
nx.draw_networkx_labels(G, pos, font_family="sans-serif")
plt.axis('equal')
plt.show()
0->1->2->3->4->9->8->7->6->5->10->11->12->13->14->19->18->17->16->15->20->21->22->23->24
[PNG image (40.1 KB)]